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The Real-World Data Dilemma

Training deep learning models sounds straightforward—feed in a bunch of data, crank some
GPUs, and voilà! But real-world datasets rarely cooperate. In practice, we often face two frus-
trating problems: not enough data and too much noise. Whether you’re working with medical
images, environmental sensors, or even rare wildlife footage, these constraints can cause your
model to overfit or learn patterns that just don’t generalize. That’s where generative models
come in. These models can learn from the limited data you have and generate more examples
that (ideally) capture the essence of your dataset. One promising family of these models is the
Denoising Variational Autoencoder (DVAE). Think of DVAEs as two-in-one learners: they can
clean up noisy inputs while also learning a latent structure that helps them generate realistic
new samples. But here’s the thing—DVAEs aren’t the only players in the game. They’re part
of a much bigger design space that includes tools like VQ-VAEs, GANs, and Diffusion Models
(like DDPMs and DDIMs). So we asked ourselves a question:

Which image generation model produces the most useful synthetic data for improv-
ing classification performance, and how does this depend on the amount of training
data available?

And not just in terms of generating pretty pictures—we wanted to know which models help
downstream classifiers (like CNNs) perform better. More importantly, what’s going on under
the hood? This prompts us to look at the following question.

How do different image generation models affect the learned latent representation
of a CNN, and can differences in representation space help explain variations in
downstream classification performance?

What has already been done

Before diving into how we tackled our two core questions, it’s worth reviewing prior work.
Rather et al. [1] propose a GAN-based framework to boost CNN performance. Others use
generative models to address class imbalance [2, 3]. Agrawal [4] compares DVAEs and VAEs
on performance and latent structure. Khazrak et al. [5] and Bauer et al. [6] evaluate diffusion
models against GANs, though without analyzing learned representations. Kim et al. [7] show
structured synthetic noise can drive useful visual representations. Fan [8] explores fully synthetic
pipelines for representation learning that rival real-data performance. Our study builds on these
by comparing several generative models and explicitly examining how their outputs reshape
CNN latent representations under varying data regimes—an angle we believe is missing from
existing work.
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Data and Models

Let’s dive into the methodology behind our experiments, starting with an overview of the data
and models we used. Much of our work builds on the excellent blog post [9], so we highly
recommend checking that out—this project can be thought of as an extension of his research.

Data

The first decision we had to make was which dataset to use for training. We chose the Fash-
ionMNIST dataset, a popular benchmark introduced by Xiao et. al. FashionMNIST contains
grayscale images of clothing items from 10 different categories. with examples of each shown
below.

Figure 1: Example of images from the dataset

Each image in the FashionMNIST dataset is 28x28 pixels, resulting in a 784-dimensional vector
when flattened. The full dataset contains 70,000 grayscale images of clothing items, divided
into 60,000 training and 10,000 testing examples. There are 10 total categories: T-shirt/top,
trouser, pullover, dress, coat, sandal, shirt, sneaker, bag, and ankle boot.

To explore the impact of data distribution on generative model performance, we create three
different subsets of the training data, each containing 5,000 samples:

• Balanced: Each class has exactly 500 samples, ensuring a uniform distribution.

• Semi-Balanced: Two randomly selected classes (in our case, pullover and shirt) have
only 100 samples each, while the remaining classes have 600 samples each.

• Highly Imbalanced: The dataset is deliberately skewed with varying numbers of sam-
ples per class to simulate extreme imbalance.

Figure 2: The distribution of the highly imbalanced data set
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Models

In our experiments, we evaluate 12 different models using a Convolutional Neural Network
(CNN) across 3 datasets. Each model generates an equal number of images as the training
set size, which are then combined with the original images and used to train the CNN. The
goal is for the CNN to classify the test set images into their respective 10 categories from the
FashionMNIST dataset. The models are tested on a set of 10,000 images, with training sets
ranging from 1,000 to 5,000 images (1k, 2k, 3k, 4k, and 5k).

Classifier Architecture (CNN)

For each of the 12 generative models, a CNN is trained to classify images into one of the 10
FashionMNIST categories. The CNN begins with two convolutional layers to extract hierar-
chical visual features, followed by a max-pooling layer that reduces spatial dimensions and
enhances robustness. The output is then flattened and passed through three fully connected
layers with ReLU activations, enabling the model to learn abstract representations and refine
class boundaries. A final output layer maps these features to the 10 target classes.

VAE

The VAE consists of an encoder and a decoder. The encoder takes the input, processes it
through two hidden layers (both with ReLU activations), and outputs two vectors: the mean
(mu) and log-variance (logvar), which represent the distribution of the latent space. The decoder
starts with the latent variable z, passing it through a hidden layer, followed by another hidden
layer, and finally outputs the reconstructed image. The output is passed through a sigmoid
activation to ensure pixel values are in the range [0, 1].

DVAE

The architecture of the DVAE is the same as the VAE described earlier. The only difference
is that various types of noise are applied to the input images during training to encourage the
model to learn to denoise and handle noisy data. These corruptions include: Gaussian noise,
salt-and-pepper noise, rotation, brightness adjustments, contrast adjustments, and blur.

VQ-VAE

The VQ-VAE architecture consists of an encoder, a vector quantizer, and a decoder. The
encoder is composed of three fully connected layers (with ReLU activations) that transform the
input into a latent representation. The output is passed through the vector quantizer, which
maps the latent variables to the closest vectors in a learned codebook and computes a loss based
on the distance between the embeddings and the codebook vectors. The decoder then takes
the quantized latent vectors, processes them through three fully connected layers (with ReLU
activations), and outputs the reconstructed image. The loss function includes the quantization
loss and the commitment loss, which encourages the encoder to use the codebook effectively.

Conditional GAN

The Conditional GAN model generates class-conditioned images. The generator takes a latent
vector and label, embeds the label, and passes the combined input through multiple dense
layers with residual connections to produce an image. The discriminator evaluates real vs.
generated images, also conditioned on the label, using spectral normalization for stability and
self-attention for improved feature extraction. The model is trained adversarially to generate
realistic images specific to the given class label.
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Big GAN

This BigGAN-inspired model is a step up from the earlier Conditional GAN (cGAN) in both
scale and sophistication. While the cGAN uses fully connected layers and simpler residual
blocks, this model incorporates deeper architectures, transposed convolutions for image up-
sampling, and self-attention mechanisms—all of which help it model more complex patterns.
Additionally, it uses ResBlocks to stabilize training during resolution changes and better pre-
serve information. These improvements allow it to generate higher-quality, more detailed class-
conditional images, especially in low-data settings.

Diffusion

Denoising Diffusion Probabilistic Models (DDPMs) generate images by starting from pure noise
and iteratively denoising through hundreds of small steps, giving them stable training, excellent
mode coverage, and state-of-the-art visual fidelity that often surpasses GANs. However, they
shine only when trained on very large, diverse datasets—small training sets leave them blurry
or off-class—and each sample requires dozens to thousands of network evaluations, making
inference comparatively slow and costly in production.

CLIP Guided Diffusion

CLIP-guided diffusion marries a diffusion generator with CLIP’s text–image similarity scores:
at each denoising step the model is nudged toward images that CLIP judges closer to a target
prompt. We adopted it hoping that rich descriptions—e.g., “winter coat” or “professional
button-up shirt” instead of the bare FashionMNIST labels coat, pullover, shirt—would push
the generator to create visually distinct, class-specific samples, improving CNN precision and
recall on those frequently confused categories. While CLIP guidance indeed offers finer semantic
control, its effectiveness still hinges on large training data and has the same multi-step sampling
cost as vanilla diffusion.

A summary of the models and the number of parameters that each of the models have can be
viewed here.

Model Trainable Parameters

VAE / DVAE 367,024
VQ-VAE 16,804
cGAN 3,950,965
BigGAN 15,233,346
Diffusion Model 4,210,224
CLIP Diffusion 5,262,896
CNN 1,658,890

Table 1: Trainable parameters for each generative model used in the study.

We aimed to test the models under reasonable computational constraints, focusing on accessible
setups. Most models, such as VAE/DVAE, VQ-VAE, cGAN, and BigGAN, were efficiently
trained on local CPUs, while the Diffusion Model required Google Colab due to its slower
inference times. This approach allowed us to conduct the experiments without relying on high-
end GPUs.
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Experimental Setup and Results

Answering Question 1

Our first experiment investigates whether certain models perform better at generating images
with varying amounts of training data, and how these effects change across our three datasets.
We outline our methodology using the balanced dataset and apply the same approach to the
other two datasets. For the balanced dataset, we trained each image generation model using
different amounts of training data, ranging from 1,000 to 5,000 images. We then paired the
generated images with the corresponding original data points and fed them into a CNN to assess
how the number of training examples impacted the performance of each model in generating
useful images. To evaluate the consistency of our findings, we ran this experiment twice for each
of the three datasets. However, we found that the results were not reproducible across runs,
suggesting instability in how training data volume affects model performance. We will discuss
the results from both experiments in detail. We will denote them as Iteration 1 and 2.

Results and Analysis For Iteration 1

(a) Balanced Dataset (b) Highly Imbalanced Dataset (c) Semi Imbalanced Dataset

Figure 3: Number of Imaged used in Training vs Classification Accuracy per Model for Each
Dataset

Across all models, we observe a general upward trend in CNN classification accuracy as the
number of training samples increases. The most significant improvements occur between 1,000
and 3,000 samples, after which performance tends to plateau, suggesting that some generative
models are already effective with just 3,000 samples. Performance across models is highly
variable—different models take the lead at different sample sizes, and results are somewhat
volatile. Notably, models trained with corrupted data using Gaussian noise or rotation tend to
perform the worst overall; however, this trend does not consistently hold when such corruptions
are applied within the DVAE framework, where certain noise types—like rotation—can actually
lead to competitive performance depending on the dataset. For future experiments, evaluating
performance at larger intervals (e.g., 1k, 10k, 50k) may offer clearer trends and reduce noise in
comparisons. DVAE(blur) and DVAE(rotation) both tend to do especially well at 5k, indicating
DVAE may be great especially with larger datasets.

On the balanced dataset, Conditional GAN and BigGAN performed well with a low amount of
data (1k images), but did not match the performance of DVAE, VAE, or Diffusion models at
5000 images. On the highly imbalanced dataset, VAE, DVAE, and VQ-VAE consistently out-
performed other models, likely due to their stability and ability to model complex distributions
without relying on adversarial training.

Note that for the figures below, the top row shows original images, bottom row shows corre-
sponding reconstructions from a model trained on a specified number of images.

In the balanced dataset, VQ-VAE and DVAE with rotation corruption achieved the highest
classification accuracies at 5,000 samples, while BigGAN led at just 1,000 samples.
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Figure 4: VQ-VAE sample output (5,000 images)

Figure 5: DVAE (rotation) sample output (5,000 images)

In the highly imbalanced setting, the DVAE with blur and the standard VAE performed best
at the lowest sample count of 1,000.

For the semi-balanced dataset, DVAE with rotation and blur noise, along with the diffusion
model, reached the top performance at 5,000 samples.

Figure 9: Diffusion sample output (1,000 images)

Figure 10: DVAE (blur) sample output (5,000 images)

These results highlight how certain generative models and even specific noise strategies can be
more effective depending on the distribution and quantity of the data, and that even with 1,000
images to train on they can generate pretty good reconstructions.

Results and Anlysis For Iteration 2

An initial review of model performance reveals that diffusion-based models consistently under-
performed in terms of CNN accuracy. In fact, among the bottom 20 models, nearly all are
variants of diffusion or CLIP-guided diffusion, scoring even lower than the CNNs trained on
the baseline datasets. This suggests that despite the theoretical strengths of diffusion models
in generative tasks, their utility in this specific data augmentation context—namely Fashion-
MNIST—was limited. A likely explanation is qualitative in nature: the images generated by
these diffusion models did not closely resemble the true distribution of FashionMNIST classes.

Figure 6: GAN sample output (5,000 images)
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Figure 7: VAE sample output (1,000 images)

Figure 8: DVAE (blur) sample output (1,000 images)

In contrast to the diffusion models, the top 20 performing models were dominated by GAN and
VQVAE-based augmentations. These generative methods consistently produced CNN accura-
cies above 0.75, suggesting that the synthetic images they generated were not only realistic, but
also class-consistent and highly useful for training. Notably, VQVAE appeared across dataset
types—Balanced, Semi-Imbalanced, and Highly-Imbalanced—indicating strong robustness to
data distribution shifts.

Interestingly, we also observed that several baseline models trained on 4000 and 5000 samples
ranked among the top performers. This reinforces the idea that for a relatively simple dataset
like FashionMNIST, sufficient real data alone can enable strong classifier performance, especially
when sample sizes reach the 4000+ range. In these cases, augmentation may provide limited
additional value, as the data coverage is already high.

Additionally, many of the imbalanced datasets—when paired with GAN or VQVAE augmenta-
tion—led to better downstream CNN accuracy than their balanced counterparts. This suggests
that generative models can not only supplement low-data regimes, but also help mitigate class
imbalance by enriching underrepresented classes, ultimately improving the model’s ability to
generalize.

The overall results, and comparison on when it is valuable to augment limited or imbalanced
data, is described in the table below.
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Table 2: Baseline vs. Best-Model CNN Accuracy Across Dataset Types and Sample Sizes

Dataset Size Baseline Best (Model) ∆ Acc. Take-away
Balanced

Balanced 1 000 0.406 0.709 (GAN) +0.302 Huge lift when data are scarce.
Balanced 2 000 0.648 0.775 (VQVAE) +0.127 Benefit shrinks as data double.
Balanced 3 000 0.654 0.786 (VQVAE) +0.132 Plateau begins; still useful.
Balanced 4 000 0.756 0.809 (GAN) +0.053 Marginal gain; plenty of real data.
Balanced 5 000 0.757 0.807 (GAN) +0.050 Similar story—synthetic optional.

Semi-imbalanced
Semi-imbal. 1 000 0.546 0.721 (DVAE brightness) +0.175 Scarce & skewed → augmentation pays.
Semi-imbal. 2 000 0.661 0.675 (GAN) +0.014 Almost no gain; real data sufficient.
Semi-imbal. 3 000 0.488 0.747 (GAN) +0.260 Big jump; baseline collapses on minorities.
Semi-imbal. 4 000 0.413 0.810 (VQVAE) +0.396 Largest lift; imbalance dominates.
Semi-imbal. 5 000 0.715 0.792 (VQVAE) +0.077 Added data narrows benefit.

Highly-imbalanced
High-imbal. 1 000 0.224 0.722 (DVAE blur) +0.499 Extreme skew + low data: augmentation

critical.
High-imbal. 2 000 0.550 0.772 (VQVAE) +0.222 VQVAE adds value.
High-imbal. 3 000 0.443 0.779 (GAN) +0.337 GAN excels once size grows.
High-imbal. 4 000 0.801 0.817 (VQVAE) +0.016 Baseline already strong; little headroom.
High-imbal. 5 000 0.667 0.759 (GAN) +0.092 Moderate boost; skew still hurts.

Answering Question 2

To investigate the second research question—how synthetic data impacts internal representa-
tions and downstream performance—we analyzed the latent space of CNNs trained on different
datasets. Specifically, for each vision model and dataset size, we passed the generated images
through the corresponding trained CNN. From each CNN, we extracted the 128-dimensional
embeddings produced by the final fully connected (FC) layer, just before classification. These
embeddings represent the model’s internal encoding of the input data.

To visualize the structure of this high-dimensional latent space, we applied t-distributed Stochas-
tic Neighbor Embedding (t-SNE) to project the 128-dimensional embeddings onto a 2D plane.
This allowed us to examine how well the representations of different classes clustered together,
and whether the inclusion of synthetic data reshaped the decision boundaries or introduced
overlap between classes.

To go beyond visual inspection, we trained CART (Classification and Regression Tree) models
on these 128-dimensional embeddings, using the true class labels as targets. The performance
of the CART models provided an interpretable, quantitative measure of the separability of the
embedding space: higher CART accuracy implies that class boundaries are more distinct in the
learned representation.

We first analyzed the embedding spaces of the baseline datasets—Balanced, Semi Imbalanced,
and Highly Imbalanced—at varying sample sizes (1000, 2000, 3000, 4000, 5000). We then
augmented each of these datasets with synthetic images generated by our vision models and
repeated the embedding extraction, t-SNE projection, and CART analysis. By comparing the
”before” and ”after” states of the embedding spaces and CART performance, we aimed to
understand whether synthetic data improved class separability, led to better generalization, or
potentially introduced overfitting.

Results For Question 2

We conclude with an examination of the CNN’s latent-space representations—specifically, the
128-dimensional embeddings produced by the final layer before classification. Our original hy-
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pothesis was straightforward: datasets whose embeddings form well-separated class clusters
should yield higher downstream accuracy. To test this, we trained CART models on the embed-
dings of each experiment; CART accuracy served as an interpretable proxy for class separability
in latent space.

The results, shown in the figure below, challenge that intuition. Most CNNs achieved consis-
tently high CART accuracy—indicating strong geometric separation—yet this separation often
failed to translate into equally high test accuracy.

Figure 11: CART Accuracy vs. CNN Accuracy

In other words, even when the network’s internal features cleanly partitioned FashionMNIST
classes, the final classifier sometimes under-performed. The disconnect suggests that latent
separability alone is not a sufficient predictor of overall performance; the realism and class
fidelity of the augmented images remain critical.

Finally, in reviewing the 128-dimensional CNN embeddings, we found that every experiment
fell into one of **three archetypal patterns**:

1. Single, well-separated clusters. Some datasets—almost always the larger imbalanced
sets—showed a single, tight cluster for each FashionMNIST class, with ample margin be-
tween classes. Interestingly, these single clusters were not particularly seen in the balanced
datasets, just the imbalanced.

Figure 12: Example of well-separated single clusters.
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2. Twin clusters per class (GAN / Diffusion). GAN and Diffusion augmentations often
produced two distinct clusters for every class—one anchored near the original data. This
suggests the generator created samples that were visually consistent with their class yet
occupied a new sub-manifold of the latent space.

Figure 13: Twin-cluster behaviour characteristic of GAN / Diffusion.

3. Overlapping garment trio (VAE / DVAE). Only the VAE and DVAE variants col-
lapsed the embeddings for shirt (class 2), pullover (class 4), and coat (class 6) into a single
region, making them largely inseparable. Although shirts, pullovers, and coats share a
broadly similar silhouette, their embedding overlap suggests that the VAE and DVAE
decoders failed to capture the finer visual cues that distinguish these garments. Figures 7
and 8 demonstrate this, showing how the generated images for those classes all looked very
similar due to their blurry quality. Consistent with this, the same three classes recorded
the lowest precision and recall scores across nearly every CNN we trained, indicating
that—even when the latent space appears separable—the generated images remain too
visually alike for reliable classification.

Figure 14: Class-2/4/6 overlap in VAE / DVAE embeddings.
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The first two archetypes align with higher CNN accuracies: either the classes are clearly par-
titioned or the generator augments them in a coherent, separable fashion. By contrast, the
VAE/DVAE overlap correlates with a sharp drop in accuracy on those three classes, under-
scoring that latent separability at the class level remains a prerequisite for reliable downstream
performance.

Limitations and Future Work

Inconsistent Results Across Runs For Some Models: The observed inconsistencies in
model performance, particularly when comparing runs with 1k and 5k samples, likely stem from
the inherent variance in model training. Some models perform better on certain runs with few
samples and other runs with more samples. This may be due to unstable learning dynamics,
where slight differences in initialization, optimization paths, or data splits lead to drastically
different results. As a result, the reliability of downstream linear probe evaluations (e.g., CART
classifiers) becomes compromised, making it difficult to draw consistent conclusions from these
experiments for all models.

Lack of Correlation Between CNN Accuracy and CART Accuracy / Embedding
Separability: The absence of a clear relationship between end-to-end CNN classification accu-
racy and the performance of CART probes on embeddings suggests that high task performance
does not necessarily imply semantically meaningful representations. CNNs might rely on dis-
tributed, entangled features or shortcut cues that suffice for the final prediction but do not
translate well into structured, easily probed embedding spaces.

Future Work: Future work should address these limitations by:

• One limitation of our study is the instability in model performance across training runs,
which made it difficult to draw consistent conclusions. We suspect that this may be
due in part to the absence of normalization layers, which are commonly used in many
of the models we employed and are known to improve training stability. While we do
not explore this further in the current work, incorporating normalization layers, improved
initialization methods, and other training regularization techniques could be a promising
direction for future research.

• Investigating representation quality more directly using a wider range of probing tech-
niques and intrinsic dimensionality metrics, beyond accuracy alone.

Conclusion

Our exploration into synthetic image generation reveals that not all generative models are
equally helpful when it comes to boosting downstream classification performance. While models
like cGAN and BigGAN can offer early performance gains in low-data regimes, their effectiveness
plateaus or falls behind as more data becomes available. In contrast, simpler models such
as DVAEs—especially those trained with certain types of input corruption (e.g., rotation or
blur)—prove remarkably robust across both balanced and imbalanced data settings. VQ-VAE
also shows strong potential, particularly in stable, balanced scenarios.

Perhaps most critically, our findings underscore that latent space representations of images alone
do not equate to “classifier usefulness.” The “visual realism” of the images plays a pivotal role
in how well the downstream classifier is able to classify images, demonstrating the importance
of not just augmenting limited or imbalanced data, but augmenting it with high quality images.
Future work should further dissect these learned feature spaces and extend evaluations to more
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complex datasets and architectures. Synthetic data isn’t just filler—it’s a powerful tool, but
only when wielded with care.
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